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History of AHS-RNG 
 
A�er a few atempts with the classic principles of the well-known PRNGs, I quickly realized 
that only a radically different approach could enable the genera�on of true random 
numbers. The smallest unit of random numbers is the individual bit. Ergo, one possible 
solu�on would be to try the much-vaunted coin toss as a basis. If it is possible to generate 
the individual bits with the best possible 50%/50% distribu�on and complete independence 
from the previous and subsequent bits, then the genera�on of genuine random numbers 
should be possible. The solu�on found must be described as crea�ve programming and not 
as an arithme�c algorithm. 
 
The main development work was carried out between 2004 and 2006. The first part was the 
defini�on of the "bit fishing table / BFT". In my first opinion the largest possible table seems 
desirable. I started to experiment with tables of 64 KB and 256 KB. The table had to contain 
a random distribu�on of 50% "0" and 50% "1". The possible variants through permuta�on 
are in unimaginable orders of magnitude, e.g. for a BFT of 64 KB there are more than 
10exp157823 variants. At the moment we are only tes�ng the applica�ons with BFT 8 KB, 
where there are already more than 6*10exp19725 varia�ons. Every single varia�on will 
generate a completely different random number series. 
 
If we want to "fish" a single bit from this table, we s�ll need a fishing rod, so to speak, in this 
case in the form of an address of a single bit. The solu�on to this task presented in the AHS-
RNG demo is the 16th version of various programs that have slowly, improvement by 
improvement, led to the current structure. In addi�on to the logical structure to achieve the 
goal, the speed of the program execu�on had to be considered and op�mized. 
 
In the beginning, the speed on Pen�um 3 and 4 computers with one core was a modest 124 
megabits per second per computer, but through further op�miza�on, e.g. through the two 
32-bit calcula�ons running in parallel in 64-bit registers, the speed could be increased for 
modern cores: to over 650 megabits per second and above, depending on the current speed 
of the core. Compared to good PRNGs (MT19937 or XOshiro256**), the speed is a 
considerable disadvantage. That is why we insist on recognizing it as a true random number 
generator, and anyone who does not want to recognize this should prove the devia�on from 
true random numbers. According to our tests with the ID-Quan�que (16 megabits/second), 
AHS-RNG has also a quality advantage over physical random number generators. We also 
disagree with the claim that computer-generated random numbers lack entropy and we are 
ready to carry out comparisons in this regard.  
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The best mo�va�on for intensive research and programming un�l the breakthrough was a 
sentence in "Discrete event simula�on in C, Kevin Watkins, 1993" page 67: "It is not a good 
idea, however, to try and design your own from scratch. The design of random number 
generators is full of nasty surprises for the unwary and is best le� to established experts". 
Anyone who is familiar with me knows that such a statement is a challenge for me that I will 
try to refute. 

 

Determinis�c true random numbers? 
 
It may seem rather here�cal to some if we claim that determinis�c true random numbers 
exist. To answer this ques�on, we need to analyze the cons�tuent proper�es of true random 
numbers. Why the good PRGNs like MT19937 or XOshiro256** don't generate true random 
numbers? These PRNGs are algorithmic mathema�cal procedures that generate quite 
reasonable random numbers. However, they involve running through large periods, in the 
case of MT19937 even a very large period. Nonetheless, both inventors claim that these are 
equally distributed random numbers and that all possible values occur equally o�en a�er 
passing through the period. This fact alone indicates that they are not genuine random 
generators. True random numbers would have to follow the laws of probability even with 
the huge quan��es of random numbers and the number per patern would have to follow 
the normal distribu�on. In addi�on, sta�s�cally relevant devia�ons from probability can be 
found when analyzed closely. 
 
The ques�on of why determinis�c random numbers can be true random numbers becomes 
interes�ng. Let's go back to the beginnings of "high-speed computa�on", to the contribu�on 
of John von Neumann at the symposium "Monte Carlo Method" from June 29, 30 and July 1, 
1949. The sec�on before the famous quote: "Any one who considers arithme�cal methods 
..." reads: 
 
"We see then that we could build a physical instrument to feed random digits directly into a 
high-speed compu�ng machine and could have control call for these numbers as needed. 
The objec�on to this procedure is the prac�cal need for checking computa�ons. If we 
suspect that a calcula�on is wrong, almost any reasonable check involves repea�ng 
something done before. At that point the introduc�on of new random numbers would be 
intolerable. I think that the direct use of a physical supply of random digits is absolutely 
inacceptable for this reason and for this reason alone. The next best thing would be to 
produce random digits by some physical mechanism and record them, le�ng the machine 
read them as needed. At this point we have maneuvered ourselves into using the weakest 
por�on of presently designed machines - the reading organ. Whether or not this difficulty is 
an absolute one will depend on how clumsy the compe�ng processes turn out to be." 
 
We are firmly convinced that this statement is s�ll valid today. The possibili�es of storing and 
re-accessing physically generated random numbers have grown to an unimaginable extent. 
Nevertheless, there are s�ll limits in this respect today. The following example proves the 
untenability of the statement "Determinis�c random numbers are automa�cally to be 
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regarded as pseudo-random numbers": Using ID-Quan�que's generator, during many weeks 
in 2008, we recorded two data files of 2000 gigabytes each. Since then, these files have been 
read out for various tests, as this is the only way to make repeatable calcula�ons (in line with 
John von Neumann's statements) and, on the other hand, direct processing would be 
ineffec�ve due to the low produc�on rate. 
 
It is indisputable that the random bits read from the physical random number generator 
deserve to be called "true random numbers". We now use these random numbers to 
perform a calcula�on that we call a "simula�on generated with true random numbers". We 
save the random numbers in a file for later checking. According to the generally accepted 
theory, the random numbers saved in this way have now degenerated into pseudo-random 
numbers, since the saved "true random numbers" have now mutated into "determinis�c 
random numbers" if we were to insist on applying the false rule that all determinis�c 
random numbers are automa�cally pseudo-random numbers! There is no doubt that 
random numbers read from a file are determinis�c random numbers. We would now have to 
call the first simula�on "with true random numbers", while the second simula�on is called 
"with pseudo-random numbers", even though the same sets of numbers were used twice.  
 
This dis�nc�on contradicts the principles of science, because one must not automa�cally 
and incoherently make a statement of proper�es that are different in essence just to 
promote one's own marke�ng ideas. We would therefore make it clear that, in our opinion, 
there are "true random numbers" that have been generated using appropriate procedures in 
accordance with John von Neumann's maxim. These can exist both as non-determinis�c or 
determinis�c random numbers, the later as stored values or as latently exis�ng true 
random numbers. 

 

Is the determinis�c AHS-RNG a TRNG ? 
 
Without any scien�fically proven basis, it is repeatedly and reflexively claimed that a 
computer as a determinis�c machine cannot generate true random numbers. The bogus 
arguments put forward relate exclusively to the typical PRNG structure, i.e. arithme�c 
procedures for calcula�ng a series of random numbers using algorithms, star�ng from a 
seed. The random numbers generated in this way vary from abysmally bad for the older 
algorithms (partly due to the limited technology of the �me) to quite useful newer variants, 
such as MT19937 and Xoshiro256**. 
 
What they all have in common, however, is the fact that the mathema�cal func�on does not 
make it possible to generate true random numbers. The classic statement by John von 
Neumann applies here: "Any one who considers arithme�cal methods of producing random 
digits is, of course, in a state of sin." But the statement then goes on: "For, as has been 
pointed out several �mes, there is no such thing as a random number - there are only 
methods to produce random numbers, and a strict arithme�c procedure of course is not 
such a method." 
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Of course, it is in principle impossible to prove directly that the random numbers generated 
by AHS-RNG are true random numbers, but we can only substan�ate the assessment "true 
random numbers" through very extensive tests, and demonstrate the non-mathema�cal 
principle by showing exactly how it works. To paraphrase John von Neumann, the method of 
genera�ng random numbers used in AHS-RNG must be considered a correct method of 
genera�ng true random numbers, the underlying principle being the genera�on of every 
single bit with a 50/50 chance. The moto we gave the method is: "Born to be wild or tame, 
or anything between". 
 
In this evalua�on, we want to limit ourselves to the determinis�c AHS-RNG, which can 
deliver a minimum number of 281,474 billion bits, corresponding to a file of over 35 
terabytes, without addi�onal entropy, using only the loaded parameters BFT, FAAP and LCG. 
To run a large simula�on on 1000 cores, you would therefore need only 17 megabytes of 
AHS-RNG parameters, compared against up to 35 petabytes of stored random numbers in 
case of physical RNGs. If the generated AHS-RNG random numbers really have the proper�es 
that are essen�al for true random numbers, this would certainly be a major improvement. 
We have created a pool of one million variants and we need only 17 gigabytes. For a pool of 
a billion different parameter tables, the memory requirement would be 17 terabytes. This 
can be compared with the memory requirement of 35,000,000 petabytes for the same 
amount of real, physically generated random numbers. 
 
How this large amount of true random numbers can be generated from 17 kilobytes of ini�al 
data? Due to the way AHS-RNG works, more than 10exp19800 completely independent 
variants of random number sequences are possible with the limited ini�al values, and are 
thus stored virtually in the ini�al data. For example, if we create a program for 
mul�plica�on, there are no results in the program. But by calling the program with the help 
of two indexes, we can calculate a mul�plica�on table up to 12 digits each, i.e. over 500,000 
trillion results. We can therefore jus�fiably claim that, if our program can calculate results up 
to 24 digits, then this number of results is virtually available. The determinis�c AHS-RNG can 
be viewed in a similar way. The only decisive ques�on is: Are the virtually available random 
numbers, which are materialized by the execu�on of the program, true random numbers? 
We are convinced that the answer to this ques�on is "yes". 

 

How the non-determinis�c AHS-RNG works 
 
While the determinis�c AHS-RNG generates the true random numbers with a specific 
program from the ini�al parameters, comparable to reading out stored physical random 
numbers, the non-determinis�c AHS-RNG uses a physical random component. A physical 
random event does not always have to be a radioac�ve decay process; �me is also a physical 
parameter that can be used advantageously in a Linux opera�ng system. The biggest 
advantage is of course the fact that this physical random generator is free of charge and 
available with a few lines of C code. 
 
Anyone who has worked with applica�ons under a Linux opera�ng system, probably on a 
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NUMA (Non-Uniform Memory Architecture) machine with L1, L2 and L3 caches and fewer 
memory channels than processor cores, knows that the execu�on �me of iden�cal jobs can 
some�mes vary greatly, which can easily be shown by using the �me command. While the 
�me command works only with milliseconds, it is possible to query the �me in nanoseconds. 
However, one restric�on must be made: The random numbers determined with the 
physically help of the run of the �me are not sta�s�cally correct random numbers. 
Fortunately, this is not necessary, the values need only to be roughly different. With these 
values used as a �mer, "one progression event" (FBM3 to FBM4, FBM2 to FBM3, FBM1 to 
FBM2 and a new FBM1) of the sequence control a�er 32 bits (or a�er 64 bits in the parallel 
version) is randomly replaced by "two progression events", always one a�er each 16 bits. In 
addi�on, the increment value of the LCG is increased by 2, which causes an addi�onal 
change in the sequence. 
 
The easiest way to generate a random value for this �mer is to calculate the result of the 
nanosecond-query modulo 997, and to add a constant of 313. The later to ensure that a 
minimum number of cycles is calculated before the next "two progression events" occurs. 
The random value calculated in this way is simply counted down a�er each 32-bit genera�on 
cycle. At the end of the �mer countdown a new "two progression events" cycle is executed, 
and a new calcula�on of the �mer random value, with the help of the nanosecond clock. If 
we use the same parameters of the AHS-RNG to generate a large to very large number of 
non-determinis�c random number series, we need to run the generator in a "warm up" 
phase of 2 million cycles to get the registers into individually different states. With different 
parameters per AHS-RNG instance, the "warm up" is also recommended if we want 
completely different random numbers right from the start. The "warm up" takes about 1/5 
of a second. 
 
This is how the non-determinis�c AHS-RNG works in "secret" mode. This means that nobody 
can recalculate the random numbers generated, even if he knows the parameter tables 
used. According to the first tests, the true random numbers generated in this way are 
superior to those generated with physical RNG. A further advantage is described in the 
ar�cle on the four different Families of AHS-RNG. 
 
The use of the internal �me data as supplementary entropy was first described in our white 
paper from 2006 (p. 25) in the Glossary as "Run-�me randomness". We designate this 
principle as "mini-entropy". In combina�on with the func�on of the program the resul�ng 
entropy in the produced random numbers is perfect, and these random numbers are 
completely different from all the others. The term mini-entropy comes from the fact that 
these �me derived variables are only around 1/1700 of the random numbers produced. 

 

The four Families of AHS-RNG 
 
1. Family AHS-RNG-determ or simply AHS-RNG 
 
There are two different basic systems of the AHS-RNG program. The first is the determinis�c 
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system, abbreviated as "AHS-RNG-determ" or simply "AHS-RNG". At the ini�aliza�on, the 
bit-fishing-table (BFT), the final address assembly parameters (FAAP table) and the 
parameters a, c and seed for one or two LCGs are loaded as parameters. These three pieces 
of informa�on then determine the genera�on of the true random numbers, similar to 
reading true physical random numbers from a file. We would like to men�on that there are 
different program variants, e.g. a 32-bit and a 64-bit variant working in parallel. The loading 
of the parameter table can also vary. However, the random numbers produced differ only for 
the 32-bit and 64-bit variants. All determinis�c versions form the first family. 

2. Family AHS-RNG-secret 
 
We call the second family the program variants that work in a non-determinis�c way with 
the physical mini-entropy "�me", but without storing the random values of the mini-entropy 
used. This makes it impossible to recalculate the random numbers generated, even if all the 
parameters are known. This is why we refer to this family as AHS-RNG-secret. 
 
3. Family AHS-RNG-record 
 
The third family works in the same way as the second, with the important difference that the 
mini-entropies used are stored when the non-determinis�c random numbers are generated. 
The mode of opera�on is therefore the same as with a purely physical random number 
generator, in which all random numbers generated are stored. This family is therefore called 
AHS-RNG-record. The big difference, however, is that the data to be stored is around 1700 
�mes smaller than with a purely physical random number generator. The name of the write 
file must be specified as an addi�onal parameter. This ensures that iden�cal real random 
numbers are available later, for example to carry out a corrected simula�on with iden�cal 
random numbers. This corresponds to John von Neumann's requirement that purely physical 
random data must also be available again in order to be able to carry out new calcula�ons 
with iden�cal random numbers. AHS-RNG-record makes it possible to carry out very large 
simula�ons with non-determinis�c random numbers, which would fail with purely physical 
random number generators due to the required storage capacity. 
 
4. Family AHS-RNG-replay 
 
The fourth family is the counterpart of the third family. By reading out the mini-entropy file 
created with the third family, the genera�on of iden�cal random numbers is guaranteed. 
This is why we refer to this family as AHS-RNG-replay. It therefore corresponds to reading 
out the stored random numbers of a physical RNG, with the great advantage of only having 
to process a data volume that is 1700 �mes smaller. The name of the file with the mini-
entropy saved by AHS-RNG-record is the addi�onal parameter here. Of course, the same 
parameters BFT, FAAP and LCG must be used as for the original AHS-RNG-record. 
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Why is AHS-RNG cryptographically secure? 
 
Cryptographically secure random number generators, whether determinis�c or non-
determinis�c, must first and foremost ensure that anyone who somehow learns a subset of 
the random numbers generated cannot guess or calculate any previous or subsequent 
random numbers. Pseudorandom number generators that have this property 
(BlumBlumShub, for example) are also known as CSPRNGs. 
 
The AHS-RNG, both in the determinis�c variant and in the non-determinis�c variant, fulfils 
this requirement perfectly. As each individual bit is the result of a complex calcula�on of a 
bit address of the bit-fishing-table and is selected from a set of 32768 iden�cal bits (each 0 
or 1), it is impossible to trace the origin of the individual bit. The bit-fishing-table is in reality 
a sta�c internal "state" which has a specific value from over 10exp19725 possible values. A 
second important sta�c secret is the FAAP. In addi�on, there is the sta�c value of the 
mul�plier (once or twice 64 bits, a prime number) and the sta�c (in the determinis�c 
variant) or dynamic value (in the non-determinis�c variant) of the increment of the LCG, any 
odd value. The star�ng value of the LCG with once or twice 64 bit must also be known, as 
the first values from the LCG influence the calcula�on over the en�re further course. These 
form half of the basic modifiers, while the other half is determined using the BFT. This 
means an addi�onal 256 bits of internal sta�c code, which can no longer be calculated 
subsequently, as this informa�on is one of the bases for indirectly crea�ng the address of 
the bit to be selected. Before this address is completely finished, it is compiled from four 
different basic randomness values with the help of FAAP. We recommend the AHS-RNG 
demo for demonstra�on purposes. 
 
If, contrary to all expecta�ons, someone comes up with an ini�al promising plan for a 
possible atack, we are happy to make our HPC of 30 TFLOPS temporarily available if 
necessary. For the �me being, however, we are convinced that all the secrets used must be 
known, i.e. the BFT, the FAAP and the parameters of the LCG as well as their seed, in order to 
make an atack possible. 

 

 

 

 

 

 

 

 

 


